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Abstract
This paper deals with the extension of the well known Stoner–Wohlfarth (SW)
model widely used to compare magnetic properties of real single-domain
particle systems with its ideal predictions. The model is often discussed in
connection with nanomagnetism. The extension of this successful SW model
is gained by combining it with Néel’s ideas concerning the dynamical behavior
and relaxation of the magnetization in such systems. We present the derivation
of a universal relaxation equation which holds for the populations of the SW
energy levels defined by the SW model. By solving this differential equation
with properly chosen initial conditions, a number of magnetization phenomena
observed experimentally versus temperature, time, and external magnetic fields
can be understood and described quantitatively. So, hysteresis loops, including
those in high-frequency external magnetic fields, can be calculated within this
model as a function of temperature, and demagnetization curves for arbitrary
heating rates in different external magnetic fields can be simulated. In contrast
to the difficulties encountered when treating the experimental data within more
general stochastic models based on the Landau–Lifshitz–Gilbert equation, one
can easily fit to a first approximation a wide set of data taken from the same
sample within the extended SW model. The well known Henkel and Thamm–
Hesse plots are reviewed and it is shown that by using these for plotting
experimental data deviations from the ideal SW behavior and influences caused
by relaxation can be detected. The plot recently proposed by Michele–Hesse–
Bremers is shown not to be sensitive to relaxation influences and therefore
reveals only the particle–particle interaction.

1. Introduction

For a long time two fundamental ideas have strongly and successfully influenced the
understanding and description of the magnetic properties of single-domain fine particles. They
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were suggested in the middle of the last century by Stoner–Wohlfarth (SW) [1] and Néel [2].
Whereas SW in their paper neglect any temperature influences and therefore relaxation
phenomena, in Néel’s fundamental paper these effects are in the foreground. SW introduced
their model to understand the coercivity of ferromagnetic alloys made from magnetically
soft basic metals but exhibiting ‘particles’ as precipitations responsible for their magnetic
‘hardness’. Néel introduced his ideas in order to understand the magnetic properties of
ensembles of small magnetic particles as can be found in geology.

The rapid growth of nanophysics has also strongly influenced the discussion about
magnetic properties of small particles and particle ensembles. Now it is possible to speak
about ‘nanomagnetism’ as an essential part of nanophysics in general. It is fortunate that small
enough nanoparticles consisting of ferro- or ferri-magnetic materials very often are single-
domain particles. Therefore, the basic ideas of Néel and Stoner–Wohlfarth become applicable
in a rather ‘natural way’. An overview about the typical scales responsible for the formation
of single-domain particles can be found in the comprehensive contribution of Hernando [3]
and a short introduction into problems of nanomagnetism can be found in [4] together with the
literature cited there.

Combining both the ideas of Stoner–Wohlfarth and Néel, marked progress could be
achieved. First it was demonstrated that the surprising shapes of Mössbauer spectra collected
in radio frequency (rf) magnetic fields on magnetic alloys containing nanoparticles [5] are due
to the unusual shape of the magnetic hysteresis loop when considering very fast changes of the
external magnetic field [6]. Then, in the next step, a generalization of the Stoner–Wohlfarth
model, with a more accurate account taken of relaxation processes, has been performed [7] in
accordance with the Néel equation for the relaxation rate between local energy minima divided
by an energy barrier U0 [2]:

p = p0 exp(−U0/kBT ), (1)

where p0 is the fluctuation rate, which is slightly dependent on temperature T as compared to
the exponent and determined by the basic properties of the particle in question, for instance,
it can be defined by the statistical average of rapidly fluctuating random forces and expressed
in terms of a ‘random field’ [8, 9]. The generalization also results in non-trivial shapes of
magnetization curves in different frequency ranges [7].

The diversity of techniques to study the non-equilibrium magnetism of nanoparticles
and corresponding forms of the temperature and field dependencies obviously supplies
one with a large amount of information on physical characteristics inherent to the system
studied [4, 5, 10–16]. The only way to extract the information from the experimental data is
to define a model of the magnetic dynamics in order to describe the whole set of experimental
data for the sample studied. In the general case, such a model can be specified by a system of
kinetic equations for magnetization relaxation based on the Landau–Lifshitz–Gilbert equation
and a number of simulations of this kind have been reported [9, 17, 18]. However, a real
numerical analysis of the experimental data has not yet been performed within this approach
due initially to computational problems. Instead, researchers use either the Stoner–Wohlfarth
model or Néel model to interpret the experimental data, which often reduces to a finite number
of empirical parameters such as the blocking temperature [10–12, 14, 15], the coercivity [14],
or magnetic anisotropy constants [13]. In such a situation, the extension of the SW model
within the Néel relaxation (1) seems to be a good phenomenological approach applicable for
fitting the experimental data and estimating the physical characteristics of samples containing
nanoparticles.

The SW model (and also the later introduced extended SW model) predicts the magnetic
behavior of an ideal particle system and therefore in the literature it is commonly accepted that
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it plays the role of a reference. Its consequences are often compared with magnetization data
obtained in experiments on real nanoparticle systems by useful plots directly constructed from
the experimental data. These plots will be discussed in this contribution, too.

In this paper we start first with repeating briefly the basic assumptions of the SW model
which neglect any thermal activation. In the second part the extended SW model is introduced
which includes the Néel possibility for thermal activation and fluctuations of the single-particle
magnetic moments within the energy levels defined by the SW model. Then the derivation
of a universal relaxation equation which holds for the differences of populations of the SW
energy levels follows. The solution of this relaxation equation is presented for the examples of
magnetization measurements performed in alternating magnetic field at different temperatures
and in an external magnetic field with constant heating rates. In both sections, helpful plots are
presented to be used in comparisons of experimental data with those predicted by the ideal SW
model and the extended SW model introduced here. We repeat the basic ideas of the Henkel
plot [19] and the plot proposed by Thamm and Hesse [20] as well as suggest an explanation
of the plot proposed by Michele, Hesse, and Bremers [4, 16] in the framework of the extended
SW model. For the calculations, the interaction effects are introduced in the framework using
the popular molecular field ansatz.

2. The Stoner–Wohlfarth model

The ideal SW particles are homogeneously magnetized single-domain particles of rotational
elliptical shape with uniform magnetization M0 occupying volume V and, therefore, have
a uniaxial (shape) magnetic anisotropy energy density K . In an external magnetic field,
the particle’s magnetization, being the vector sum of its atomic constituents, rotates
homogeneously and behaves like a rigid macroscopic magnetic moment M0V . The energy
density E of such a particle (2) is defined by the anisotropy term and the Zeeman
contribution [1]:

E = −K cos2(θ − φ) − H M0 cos φ, (2)

where θ and φ are the angles composed by the external field with the easiest magnetization axis
and the magnetization unit vector m = M/M0, respectively (figure 1). For a given particle’s
properties (M0 and K ) and fixed orientation of the easy axis with respect to the magnetic field,
the energy minima determining the position of m can be calculated using (2) for each magnetic
field strength. The projection of m on the field direction represents the relative magnetization
value. Plotting these dependences versus H delivers reversible magnetization curves for small
H values or hysteresis loops when H exceeds a critical value. In the SW model the direction of
the particle’s magnetic moment lies in the plain defined by the vector of the external magnetic
field H and the easy axis.

It is convenient to introduce a reduced dimensionless magnetic field [1]

h = H

HC
, HC = 2K

M0
. (3)

Figure 1 (right) shows a series of the particle’s energy dependences on the angle φ whereas
the normalized dimensionless magnetic field strength h acts as a parameter. As seen from the
figure, there are two identical local energy minima corresponding to the easy axis direction in
the absence of external field. When an external field is applied, the minima shifts over the angle
φ, i.e. the magnetization tilts away from the easy axis. In weak magnetic fields there remain
two energy minima on the curves, while in a reduced magnetic field h is stronger than the
critical field depending on the particle’s orientation (figure 1, right) and only one local energy
minimum survives. (There exists a settle point for h = 0.5 and φ = −90◦.) The essential
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Figure 1. Left: geometric details and angles used to describe the energy density of the
magnetization m for a Stoner–Wohlfarth particle with the easy axis fixed in space parallel to the y
direction in an external magnetic field H . Right: the energy density of an SW particle for a fixed
angle θ = 45◦ versus the angle φ (rotating the particle’s magnetization vector). The parameter is
the normalized external field h.

assumption of the SW model is that when the external field varies, for definiteness say from
positive values of h, the particle’s magnetic moment follows the position of and instantaneously
changes its direction in accordance with the local minimum and only in a field h > hc(θ) passes
immediately into the absolute minimum. This actually assumes that there exists an extremely
high energy barrier between two local states:

U0 = K V � kBT, (4)

where V is the particle’s volume, so that according to the Néel equation (1) jumps between
these local states at h < hc(θ) are supposed to be very slow so that they can be neglected for
the measurement time.

When an external periodic magnetic field with normalized amplitude above h = 0.5 is
applied, the time dependence of the particle’s magnetization takes the form of a hysteresis loop.
If the amplitude of the periodic field is lower than the minimum critical field hc(45◦) = 0.5,
then according to the SW model the particle is into one of two local energy minima and never
leaves it for the other. The total magnetization curve for an ensemble of the SW particles is
naturally the result of averaging over the particles with different orientations as well as over
different trajectories within a particular group of particles for which the corresponding value of
critical field is larger than the alternative field amplitude.

m(H ) =
∫ π

0
m(θ, H ) sin θ dθ. (5)

The simplicity of the SW model allows one to calculate the magnetic properties of a
particle ensemble. Because the particles in an SW ensemble are interaction free, their magnetic
properties are very often used as a reference for the behavior of systems composed from real
particles. Let us now consider some criteria introduced to identify any deviation from the ideal
SW particles in the limit without any thermal activation, i.e. when kBT � K V which is also a
basic/important assumption of the SW model.
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Figure 2. Left: schematic for measuring the remanent magnetizations in order to achieve the Henkel
plot. Right: schematic representation of an initial magnetization and the following hysteresis loop
in order to achieve the Thamm–Hesse plot.

2.1. Plot proposed by Henkel

Measurements of the remanent magnetization are widely used for comparison of a real
particle system’s magnetic properties with an ideal SW ensemble. This is often done to
characterize interactions between the particles and seldom done to detect deviations from
uniaxial anisotropy. Following the suggestion given by Henkel [19], as shown in figure 2 (left),
two kinds of remanent magnetization can be distinguished. The demagnetization remanence
Md(H ): after saturating the sample by a ‘positive’ external field Hsat , a ‘negative’ (in the
opposite direction) magnetic field H is applied and then switched off, resulting in the remanent
magnetization Md(H ). This procedure will be repeated with increasing negative fields until
−Hsat is reached leading to Md(Hsat). The magnetization remanence Mr(H ): starting with
a sample exhibiting M(H = 0) = 0 a field H is applied and switched off, resulting in the
remanence Mr(H ). The procedure is repeated until Hsat is reached. The resulting dependences
Md(H ) and Mr(H ) are usually normalized by the maximum remanence Mrs = Mr(Hsat),
leading to md(H ) and mr(H ), respectively.

In an ensemble of ideal SW particles a linear relation between these remanences exists
(ideal Henkel plot):

md(H ) = 1 − 2mr(H ). (6)

This relation naturally follows from the obvious consequence of the SW model based on
equation (2), resulting in the point asymmetry property of the hysteresis curve which for
positive H delivers

m1,2(θ, H ) = −m2,1(θ,−H ), (7)

where m1,2 = M1,2(θ, H )/M0 are the projections of the normalized magnetic moment of the
particle on the direction of the magnetic field, corresponding to the local energy minima. For
the relative occupation numbers within two local energy minima we obtain

w1(θ, Hsat) = 1, w2(θ, Hsat) = 0 (8)

for the demagnetization remanence scheme and

w1(θ, H = 0) = w2(θ, H = 0) = 1/2 (9)
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for the magnetization remanence scheme. According to the principal assumption of the SW
model given by equation (4), these populations do not change with H decreasing (or increasing)
until the value reaches the corresponding Hc(θ) value. Otherwise, the populations change in a
self-consistent way for the two regimes due to equation (7), so that relation (6) must be retained
for ideal SW particles at any H and θ values.

Deviations from the linear relation (6) should be evidence for the difference of the real
particle system from the ideal SW particle ensemble which may be due to the presence of
interactions or a more complex (not uniaxial) magnetic anisotropy.

2.2. Plot proposed by Thamm–Hesse

Because the magnetization measurement, following the suggestion of Henkel, must start from
the demagnetized state of the sample, it must be possibile to measure the initial magnetization
curve. Thamm and Hesse [20] proposed using this opportunity to measure the initial
magnetization curve represented here as a relative magnetization m ic(H ) (figure 2, right).
After reaching the saturation magnetization only once, a complete hysteresis loop should be
measured. From this the upper curve in the first quadrant muc(H ) and the lower curve in the
forth quadrant should be used for evaluation. Then the difference indicating any deviation
�mTH from ideal SW behavior is obtained simply by plotting

�mTH(H ) = m ic(H ) − 1
2 [muc(H ) + m lc(H )]. (10)

It is easy to see that �mTH = 0 for the ideal SW particles results again from equation (7) and
initial populations (8) and (9) for the muc(H ) and m ic(H ) measurements, respectively, as well
as from an additional condition

w1(θ,−Hsat) = 0, w2(θ,−Hsat) = 1 (11)

for the m lc(H ) dependence. In their original paper [20] Thamm and Hesse used the fact that
a single SW particle has no explicit initial magnetization curve. The latter appears only in an
ensemble of SW particles. An example of measurements performed on a real particle system
in a magnetic storage medium can also be found in [20]. It can be found in experiments that
the deviation can be positive and negative. A change in sign of the deviation can also appear
with the external magnetic field H monotonously growing.

In the Henkel plot one should measure Mrs for following the normalization to get the plot,
while there is no need in the normalization for the Thamm–Hesse plot. For convenience we
used normalized magnetization here. A critical point in both techniques, in the Henkel plot and
the Thamm–Hesse plot, is that the experiment must start with a particle system exhibiting the
initial zero-magnetization state. Normally, it is very difficult to obtain this zero magnetization.
It is often given in a freshly prepared sample. Ideal for such measurements are samples
consisting of frozen ferrofluids [4] which can be molten and frozen in zero external magnetic
field which allows one to achieve a completely zero magnetized state. The often used AC
demagnetization is problematic as experimentally shown in [21].

2.3. Interaction effects in Henkel and Thamm–Hesse plots

In order to demonstrate interaction effects we use the conventional ansatz of the molecular
field approximation. Therefore, an internal field proportional to the momentary magnetization
is introduced along with an external periodic magnetic field:

H (t) = H0 sin(ω0t) + bM(t), (12)

where H0 and ω0 are the field amplitude and angular frequency, respectively, b is the molecular
field constant.
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Figure 3. Hysteresis loops (top), Henkel plots (center), and Thamm–Hesse plots (bottom) for an
ensemble of ‘positive’ interacting (b = 0.1, 0.3, 0.5 from left to right) SW particles in periodic
magnetic field with amplitude h0 = 1.1. Dashed straight lines show the Henkel plots for the non-
interacting SW particles.

This internal field may be due to particle–particle interactions with the tendency to form
ferromagnetism being a positive interaction (b > 0) as well as the demagnetizing field
depending on the shape of the macroscopic sample normally being negative (b < 0). Negative b
values should also be considered when the medium in which the particles are fixed can transmit
and influence the particle–particle interactions [4], for example when the medium contains very
small particles still behaving like paramagnetic ones whereas the particles under consideration
are determining the magnetization of the sample.

Some examples of magnetization curves accompanied with the corresponding Henkel and
Thamm–Hesse plots are presented in figures 3 and 4 as calculated within the SW model. As
clearly seen from the figures, the positive (ferromagnetic) interaction widens the hysteresis
loop while the negative (antiferromagnetic) one makes it narrower. At the same time, the
corresponding deviations from the behavior of the ideal non-interacting SW particles grow
in the Henkel and Thamm–Hesse plots with the absolute value of interaction parameter b
increasing.

Note that rather non-trivial hysteresis loops can be realized for a stronger ferromagnetic
interaction between SW particles in complete analogy with the detailed consideration of the
case given in [6].

3. The generalized Stoner–Wohlfarth model

In contrast to the Néel idea, the relaxation processes were not directly introduced in the SW
model, nevertheless, the relaxation is presented indirectly and plays a rather non-trivial role
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Figure 4. Hysteresis loops (top), Henkel plots (center), and Thamm–Hesse plots (bottom) for
an ensemble of ‘negative’ interacting (b = −0.1,−0.3,−0.5 from left to right) SW particles in
alternating magnetic field with amplitude h0 = 1.1.

Figure 5. Schematic of the energy barriers and transitions between local energy minima within the
generalized SW model.

in this model. Namely, it is assumed that with a magnetic field changing: (i) the particle’s
magnetic moment being in a definite energy minimum follows the position of the local energy
minimum and instantaneously changes its direction in accordance with the strength of the
magnetic field applied; (ii) transitions between the states corresponding to different energy
minima are forbidden until the strength of the magnetic field becomes stronger than the
critical field. In other words, the relaxation process is both extremely fast and extremely
slow. The impossibility of jumps between the states with different energy minima is indirectly
substantiated by the presence of high energy barriers Ui hampering the jumps (see figure 5).
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However, this assumption appears to be valid in a wide range of magnetic fields weaker than
hc, but that must be wrong in the vicinity of the critical field.

A more accurate description of the relaxation process within the SW model has been
suggested in [6], where the reorientation of the particle’s magnetic moment is regarded to occur
not only in a magnetic field stronger than hc(θ), but also in weaker fields when the effective
energy barriers Ui are not too high as compared to the thermal energy. Such a generalization of
the SW model results in a successful description of the remarkable changes in both the magnetic
properties and shape of Mössbauer spectra of SW particles [7].

In accordance with the results of [6] and the Néel equation (1), we will assume that
depending on the strength of magnetic field in each moment the relaxation process is defined
by only two parameters

p12(θ, H, T ) = p0

2

∑
i=1,2

exp[−U1i(θ, H )/kBT ] (13a)

and

p21(θ, H, T ) = p0

2

∑
i=1,2

exp[−U2i(θ, H )/kBT ], (13b)

where

Ui j(θ, H ) = E (max)

j (θ, H ) − E (min)
i (θ, H ). (14)

Here, p12 and p21 make sense of the probabilities of the transitions between the local
equilibrium states (figure 5). For each group of particles with different orientations the values
of E (max)

i and E (min)
i can be estimated by means of uncomplicated numerical calculations. (Note

that in contrast to [6] where only the lower energy barrier has been taken into account, we have
introduced into equations (13) an average value of relaxation rate of jumps over both the SW
barriers in order to better approximate the three-dimensional character of the energy barrier
existing in reality.)

This relaxation model has the advantage that the relaxation process as a whole is
characterized by only two parameters: the constant p0 and the height of the energy barrier
U0 = K V in zero field. At the fixed p0 and extremely high U0 just the initial SW model
is realized, and the higher U0, the smaller the time interval within which the energy barriers
cannot be regarded as small ones. In the limiting case U0 → ∞ this interval tends to zero.
(In the range of small energy barriers a more accurate description of the relaxation processes
could be given, when p0 is no longer a constant and depends on the strength H of magnetic
field [22].)

In magnetic fields |h| < hc, each particle can stay only into two states corresponding to
the local energy minima between which the relaxation transitions can occur. Then, the relative
equilibrium populations of the states are defined by the detailed balancing principles:

w
(0)
i (θ, H, T ) = exp[−E (min)

i (θ, H )/kBT ]
exp[−E (min)

1 (θ, H )/kBT ] + exp[−E (min)
2 (θ, H )/kBT ] (15)

and the projection of the equilibrium magnetization of the particle on the direction of the
magnetic field is determined by the following expression

m(0)(θ, H, T ) = w
(0)
1 (θ, H, T )m1(θ, H ) + w

(0)
2 (θ, H, T )m2(θ, H ), (16)

where mi = Mi (θ, H )/M0 are the projections of the normalized magnetic moment of the
particle on the direction of the magnetic field, corresponding to the local energy minima.

Naturally, under the action of an external time-dependent field (which is assumed here to
be periodic in time) the true populations of the local states are in general not equilibrium when

9



J. Phys.: Condens. Matter 19 (2007) 506201 M A Chuev and J Hesse

the frequency of the field is high enough as compared to the relaxation rate and depend both on
the external parameters (H , T , and the rate of changes in one of them) and parameters (K , V ,
M0, p0, and their distributions) inherent to the system studied. So, at each moment the changes
in the non-equilibrium populations of the local states, w1(t) and w2(t), for a group of particles
with the given angle θ in time can be described by two conventional combined equations

dw1,2(t)

dt
= ±[p21(t)w2(t) − p12(t)w1(t)]. (17)

Taking into account the obvious equality

w1(t) + w2(t) = 1, (18)

these equations are reduced to the single equation
dw̃(t)

dt
= −p(t)[w̃(t) − w̃(0)(t)] (19)

for the difference of the populations

w̃(t) = w1(t) − w2(t), (20)

which is a typical relaxation equation. Here we have introduced

p(t) = p12(t) + p21(t), (21)

and

w̃(0)(t) = w
(0)

1 (t) − w
(0)

2 (t). (22)

The relaxation equation (19) bears the extended Stoner–Wohlfarth model and should be solved
together with the initial conditions. Note that we write down the effective relaxation rates pi j(t)
in equations (17) and (19) assuming that at each moment t the system exhibits energy barriers
depending on H (t) and/or T (t), which results in the time dependence p(t) that is generally
determined by equation (13). That is why the kinetic equation can principally describe memory
effects depending on initial conditions in a specified scheme of measurements. As we can see
below, this circumstance results in a cardinal difference of relaxation effects on the empirical
plots for measurements of magnetization in alternating field and demagnetization in heating
where the H (t) and T (t) dependencies are realized, respectively.

According with the initial SW model, in a magnetic field stronger than the critical one,
|h| > hc, there are already not two local, but only a single absolute energy minimum and the
particle gets to the state corresponding to this minimum in a magnetic field stronger than hc. In
this case w̃(0)(t) = 1 and −1 for h > hc and h < −hc, respectively. Such very well defined
states for the particle system can experimentally be achieved by positive high field cooling or
negative high field cooling which is described later.

Nonlinear equation (19) should be supplied with the boundary conditions which are
determined by the concrete experimental scheme (see below) applied to study magnetic
properties. If w̃(t) is known, the time evolution of the magnetization of a group of particles
with the given angle θ is determined by

m(t, θ) = w1(t, θ) cos φ1(θ) + w2(t, θ) cos φ2(θ), (23a)

where

w1,2(t, θ) = 1 ± w̃(t, θ)

2
, (23b)

the angels φ1 and φ2 correspond to the local energy minima. In order to determine the evolution
of the total magnetic moment of an ensemble of randomly oriented and non-interacting SW
particles, it is necessary to carry out the sum

M(t) = M0

∫
m(t, θ) sin θ dθ. (24)

10
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There always exists a distribution of particle sizes P(V , σV ) with a certain width σV in a real
samples, so that one has also to perform an averaging over the distribution

M̄(t) =
∫

M(t)P(V , σV ) dV . (25)

The generalization of the relaxation process in the SW model results in essential changes in the
nonlinear magnetic properties and, first of all, in the shape of hysteresis loops [7].

Whereas the relaxation equation (19) for the differences of populations generally holds, the
situation for the magnetization is more complex as can be seen in equation (23). Considering
the very special case of a system of identical completely textured SW particles with the easy
axes parallel to the external magnetic field, the kinetic equation is strongly simplified [6]:

dm(t)

dt
= −p(t) · [m(t) − m0(t)], (26)

where m(t) ≡ w̃(t) and m0(t) ≡ w̃0(t). This very special case was considered in the
introductory part of [4] whereas all calculations must be done and were performed using
equation (19).

3.1. Magnetization curves in alternating magnetic filed

The magnetization curve in the initial SW model is determined by only the amplitude of
alternating magnetic field (12) and does not depend on either its frequency or the temperature
at which the curve is measured. In the extended SW model presented above, the shape of
hysteresis loops already becomes dependent on the magnetic field frequency due to relaxation
processes being taken into account, i.e. of the ratio ω0/p0 as well as of the value of the effective
energy barrier U0/kBT [7]. In particular, a simple physical explanation of the widening of the
hysteresis loop (increase in the effective switching field) with increasing frequency ω0 has been
given: at lower frequencies ω0 the SW particles have more time to come into the equilibrium
state and the corresponding switching field appears to be weak, while at higher frequencies the
particles’ magnetic moments have no time to populate the local energy levels in accordance
with their equilibrium population so that a stronger field amplitude H0 is necessary for the
particles’ magnetization reversal. This fact has been directly associated with a large difference
between the switching fields for the widely used soft magnetic Permalloy evaluated from the
Mössbauer experiments under radio frequency field excitation (Hc is about several oersted [23])
and from conventional magnetization measurements at low frequencies where Hc only equals
about several hundredth of an oersted.

Now we discuss the temperature dependence of the hysteresis shape of magnetization
curves for an ensemble of nanoparticles. One can find a number of experimental data of the
kind (e.g. the most pronounced set in [18]), however, the treatment of the data used is restricted
by the only parameter, the coercive field, which obviously gives very poor information about
such complicated systems as an ensemble of nanoparticles. In contrast to the simplest analysis,
the extended SW model described above supplies one with a rather powerful tool to extract
much more detailed information about the system studied from the experimental magnetization
curves. In order to calculate the curves one should solve the kinetic equation (19) with boundary
conditions which are given by the periodicity condition when h0 < hc(θ):

w̃(t + 2π/ω0) = w̃(t), (27a)

or by the initial condition

w̃(π/2ω0) = 1 (27b)

if h0 � hc(θ).
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Figure 6. Magnetization curves in an alternating magnetic field with the amplitude h0 = 1 (left)
and 0.1 (right) as calculated within the generalized SW model (p0/ω0 = 1010) for an ensemble of
non-interacting particles with U0/kBT = 10, 20, 30, 50 (from the inner hysteresis loop to the outer
one in the left panel and figures in the right one).

For instance, figure 6 shows the hysteresis loops for an ensemble of SW particles calculated
within the extended SW model as a function of the effective energy barrier U0/kBT (which at
fixed values of U0 can be regarded as the temperature dependence). As clearly seen from the
figure, for H0 > Hc the hysteresis loops become broader with the effective energy barrier
U0/kBT increasing (temperature decreasing), which qualitatively correspond to the behavior
observed in the experimental temperature-dependent magnetization curves [14] so that the latter
can be treated within the extended SW model.

In weak alternating magnetic fields with amplitudes smaller than Hc/2 the shape of the
hysteresis loops as a function of the periodic field frequency changes in a more complicated
manner (figure 6, right). At lower energy barriers (high temperatures) the hysteresis loop
broadens with the temperature decreasing by analogy with the case shown in figure 6, left.
At extremely high energy barriers (low temperatures) when the relaxation process becomes
vanishing, a reversible curve of paramagnetic type is observed instead of the hysteresis loop.
And in an intermediate range of energy barriers (temperatures), hysteresis loops of an exotic
form are observed (see figure 6, right).

Such a major changes in the shape of hysteresis loops calculated within the extended SW
model should naturally be revealed in the Henkel and Thamm–Hesse plots. Examples are
shown in figure 7. As seen from the left column of the figure, even in the absence of interaction,
deviations of the plots from those characteristic of an ensemble of ideal SW particles are
observed, the signs of changes being opposite. It is clear that these changes in the plots are only
due to relaxation effects. With increasing interaction parameter the hysteresis loop becomes
broader and the shape of plots changes towards that for the initial SW model. However, in
contrast to the latter, drastic changes in the plots occur at the external field strength not around
the minimal value of h0 = hc(45◦) = 0.5 (see figure 3), but in a somewhat weaker field
(figure 7).

A detailed consideration of the problem is out of the frame of this paper and will be studied
elsewhere. Note only that, as seen from figure 7, the relaxation and interaction effects are
revealed on the Henkel and Thamm–Hesse plots in a qualitatively different manner and could
be easily distinguished one from the other.

Finally, we should mention that we have to speak about high frequency when the frequency
of the external magnetic field becomes comparable to or larger than the relaxation rate.
The momentary relaxation rate in the interaction-free SW model is dependent only on the
temperature and is independent of the initial state of the magnetization. This situation changes
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Figure 7. Hysteresis loops (top), Henkel plots (center), and Thamm–Hesse plots (bottom) for an
ensemble of nanoparticles as calculated within the generalized SW model (h0 = 1, U0/kBT = 20,
p0/ω0 = 1010) for different values of the interaction parameter b = 0, 0.1, 0.3 (from left to right).

if the interactions start to become important. Then the relaxation rate becomes dependent on
the momentary field and magnetization.

3.2. Demagnetization curves in heating

There exists one more highly informative technique to study non-equilibrium magnetism of
nanoparticle systems, i.e. measurements of temperature dependence of their magnetization
during heating in external magnetic fields (field warming (FW)) after cooling in different
regimes in order to reach a different, but well-defined low-temperature state of the system
studied [4, 12, 24, 25]. In these papers (for clearer definition) positive high field cooling
(PHFC) and negative high field cooling (NHFC) were introduced. This is done in order to
have a strict difference to the very often used field cooling (FC) or positive/negative field
cooling (PFC/NFC) in more or less arbitrarily chosen magnetic field strengths. In [12] PHFC
means cooling the sample in a field strong enough to populate only magnetic moment states
with moments oriented parallel to the external field. In this cooling procedure, down to a
temperature below the blocking temperature of the particles, the sample is prepared in a well-
defined magnetic state. From this, the warming in external magnetic fields FW starts (the
field strength now can be chosen very differently to the cooling process and has to regard also
small values). For such a procedure the abbreviation PHFC ‖ FW was introduced. NHFC
also requires preparing the sample in a well-defined magnetic state but with the difference that
now the magnetization is opposite to the field orientation applied during heating the sample.
Also, for such a procedure the abbreviation NHFC ‖ FW is used. Whereas the procedures
of PHFC and NHFC always lead to a well-defined ‘starting state’ of the sample, the often
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k

Figure 8. Demagnetization curves PHFC ‖ FW, ZFC ‖ FW, and NHFC ‖ FW (top) and differential
susceptibilities (bottom) in heating for different strengths of applied magnetic field h = 0.01 (left),
0.03 (center), and 0.1 (right) in different cooling regimes as calculated within the generalized SW
model (p0/(�T/�t) = 109 K−1).

used FC procedures described in the literature only use intermediate field strength values and
therefore start with samples exhibiting different populations of both energy levels in the SW
model. Therefore, we do prefer PHFC and/or NHFC together with zero field cooling (ZFC) in
the following considerations.

In contrast to the initial SW model, which cannot completely describe this type of magnetic
measurement, one can simulate these curves within the extended SW model given above.
Indeed, we can use the same kinetic equation (19) in order to describe the temporal changes
in non-equilibrium populations of local energy states, assuming that their time dependence is
defined not by an alternative field (12), but by the temperature changing in time, e.g.

T (t) = T0 + (�T/�t)t, (28)

where T0 is the temperature at which the heating starts, and (�T/�t) is the rate of changes
in temperature. In order to calculate the demagnetization curves in heating, one should solve
equation (19) with boundary conditions which in this case are the initial conditions defined by
the cooling procedures:

w̃ j (T0) = 1, 0,−1, (29)

for PHFC, ZFC, and NHFC.
Then, using equations (19)–(25), (28), and (29), one can calculate the temperature

dependence of demagnetization for an ensemble of nanoparticles within the extended SW
model as a function of the internal parameters K , V , σV , p0 provided that the external
parameters H , T0, and (�T/�t) are given. Figure 8 shows an example of the demagnetization
curves for different cooling procedures as a function of the applied magnetic field. As
clearly seen from the figure, these curves qualitatively reproduce the behavior observed
in the experimental temperature-dependent demagnetization curves [4, 12, 24] so that the
experimental data can be largely treated within the extended SW model.

The difference between cooling regimes PHFC ‖ FW, ZFC ‖ FW, and NHFC ‖ FW is
most pronounced in the corresponding temperature dependences of magnetic susceptibilities
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Figure 9. Demagnetization curves in heating within different cooling regimes PHFC ‖ FW,
ZFC ‖ FW, and NHFC ‖ FW (top) and corresponding Michele–Hesse–Bremers plots (bottom) for
different values of the interaction parameter b = 0.01 (left), 0.1 (center) and −0.1 (right) as
calculated within the generalized SW model (h = 0.1, p0/(�T/�t) = 109 K−1).

calculated within the extended SW model in accordance with the definition given in [12] which
in general reads

χ(T, H ) = lim
�H→0

[
M(T, H + �H ) − M(T, H )

�H

]
. (30)

The dimensionless value χ(T, H ) · K/M2
0 is plotted in figure 8, bottom. These curves can be

very helpful in understanding and treating the temperature dependences of differential magnetic
susceptibilities experimentally evaluated for systems with magnetic nanoparticles [12, 24].

3.3. Universality of the kinetic equation and plot proposed by Michele–Hesse–Bremers

As one can see from the previous two sections, the kinetic equation (19) appears to be
universal for descriptions of a number of experimental data collected using different techniques.
Moreover, as has been found empirically [4, 16], there exists one more plot in order to test the
presence or absence of interaction within the measurements of the temperature dependence of
magnetization of nanoparticles in heating after definitive cooling in different regimes. Michele,
Hesse, and Bremers [4, 16] have shown that for non-interacting SW particles the following
relation holds:

mZFC‖FW(T ) = 1
2 [mPHFC‖FW(T ) + mNHFC‖FW(T )]. (31)

In an real particle system, therefore, it becomes sensible to plot the following deviation:

�mMHB(T ) = mZFC‖FW(T ) − 1
2 [mPHFC‖FW(T ) + mNHFC‖FW(T )]. (32)

For instance, figure 9 shows an example of the demagnetization curves in heating
for different cooling regimes calculated within the generalized SW model for different
values of the interaction parameter b, accompanied by the corresponding Michele–Hesse–
Bremers plots. As clearly seen from the figure, the presence of interaction breaks the
condition (31), the corresponding deviation (32) being larger with increasing interaction
parameter b. Moreover, the sign of the deviation is opposite for positive and negative b values.
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Such a behavior is qualitatively clear. In the presence of ‘positive’ interaction, at the starting
point of measurements (at low temperatures) an ensemble of interacting SW particles in the
PHFC ‖ FW regime is under a stronger effective magnetic field as compared to that in the
NHFC ‖ FW regime, which is in accordance with equation (12). This situation remains with
temperature decreasing so that the equilibrium state of the system in the PHFC ‖ FW regime
is reached at lower temperatures than that in the NHFC ‖ FW regime (magnetization in the
ZFC ‖ FW regime appears to be in between). For a ‘negative’ interaction the situation is
just the opposite so that the magnetization of an ensemble of interacting SW particles in the
PHFC ‖ FW regime is ‘delayed’ in the temperature at which the equilibrium state is reached
(see figure 9). These effects are clearly seen in the corresponding Michele–Hesse–Bremers
plots.

In contrast to the Henkel and Thamm–Hesse plots constructed from hysteresis loops, the
relaxation does not influence the Michele–Hesse–Bremers plot for a system of non-interacting
SW particles. This difference is obviously related to the difference in initial conditions with
which the plots are obtained. In magnetization measurements in alternating magnetic field
the partial curves based on which the Henkel and Thamm–Hesse plots are constructed are
measured starting from different initial states and at different initial strengths of external
magnetic field. This results in different initial relaxation rates (13) at the starting point of
each measurement, which breaks the symmetry of kinetic equation (19). Otherwise, the
PHFC ‖ FW, ZFC ‖ FW, and NHFC ‖ FW curves, on which the Michele–Hesse–Bremers
plot is constructed, are measured principally at the same values of the field strength H and
temperature T (t) so that the symmetry of equation (19) with respect to the given initial
conditions remains over the whole temperature range of measurements.

It is easy to see that the Michele–Hesse–Bremers equality (31) directly follows from
the universal kinetic equation (19). Indeed, due to the fact that the coefficients p(t) and
w̃(0)(t) depend only on the momentary values of magnetic field and temperature, which are
the same for different cooling regimes, this equation can be rewritten for the average value
of non-equilibrium difference in populations of local energy states for the PHFC and NHFC
regimes

w̄FC(t) = 1
2 [w̃PHFC(t) + w̃NHFC(t)] (33)

in a similar manner:
dw̄FC(t)

dt
= −p(t)[w̄FC(t) − w̃(0)(t)] (34)

with the obvious initial condition for a group of SW particles with the given angle θ

w̄FC j (T0) = 0. (35)

It is clear that equation (34) with the initial condition (35) is nothing more than the kinetic
equation for the ZFC regime, i.e. w̄FC(t) = w̃ZFC(t). Then, performing all the summations
by means of equations (23)–(25), one comes to the Michele–Hesse–Bremers relation (31) for
an ensemble of non-interacting SW particles. As mentioned above, the presence of even a
small interaction of any sign will break the symmetry of kinetic equation (19) defined by
equations (33)–(35) and result in non-zero deviation (32).

4. Conclusions

This paper has started with the basic assumptions of the Stoner–Wohlfarth model which in its
original form neglects any thermal activation in the movement of the magnetic moments. Just
the basic SW ideas lead one to useful plots which evaluate the difference between the magnetic
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behavior of a SW system acting as a reference in comparison to the real systems. Therefore
the Henkel plot and the plot proposed by Thamm–Hesse are discussed and often used in the
evaluation of experiments. In the second part the extended SW model is introduced which
includes the Néel possibility for thermal activation and fluctuations of the single-particle’s
magnetic moment. These considerations lead us to a generally valid relaxation differential
equation which holds for the population difference of both SW energy levels. In this way
the general possibility is offered to describe any magnetic property of the particle system
in question in the limit of the basic Stoner–Wohlfarth assumptions, for instance, any type of
hysteresis loop collected in slowly changing external magnetic fields (slow in comparison to
the relaxation rate) but also the hysteresis loops for rapidly changing external magnetic fields
(fast in comparison to the relaxation rate).

On the other hand, any kind of demagnetization of the nanoparticle sample when heating
in an external magnetic field can be obtained and treated within the same model. Here we
do prefer to start with well-defined low-temperature magnetic states of the particle system in
question which can be achieved experimentally by positive high field cooling, negative high
field cooling, and zero field cooling, respectively. In this consideration the idea of a new
plot, proposed by Michele et al [4], is explained within the extended SW model in terms
of a general universal relation: in an interaction-free SW particle system the magnetization
curve obtained after zero field cooling is the arithmetic middle taken from the magnetization
measured after positive high field cooling and negative high field cooling measured in the same
external magnetic field with the same heating rate. It should be noted that the extended SW
model helps to clarify the principal difference between the classic Henkel (or Thamm–Hesse)
plot and the recent Michele–Hesse–Bremers plot because the former is affected by both the
magnetization relaxation and inter-particle interaction while the latter is just a consequence
of relaxation effects and characterizes the presence or absence of only interactions between
particles.

Additional information can be obtained from the Mössbauer spectra collected on magnetic
nanoparticles. It was shown in [5, 7] that the spectra measured under rf field excitation can
also be treated and understood within the extended SW model with an effective inclusion
of the magnetization’s precession effects [9]. All the techniques mentioned above can be
applied to the same sample, and treatment of the whole set of experimental data collected
in the different techniques within the same model of magnetic dynamics must give a lot of
information about the system studied, even about a complex system of magnetic nanoparticles.
The extended SW model is the tool we propose to solve this problem. It is also clear that a
real system containing nanoparticles is always inhomogeneous so that one should inevitably
take into account distributions of physical parameters inherent to the system (e.g. particle size
distribution [24, 25]) in a treatment of the experimental data within any model of magnetic
dynamics. Such a model should also include somehow the temperature dependence of the
uniform saturation magnetization M0(T ) characterizing each single particle.

One should keep in mind that, in agreement with the basic assumptions of the SW model,
the continuous diffusion and precession of the particle’s magnetic moment are also not taken
into account in the extended SW model. This will limit the application of the latter in analyzing
the experimental data and more general models of magnetic dynamics [8, 9, 17, 18] can
essentially correct the results of analysis within the extended SW model mentioned above.
However, the main advantage of the model is its simplicity in numerical calculations so that
one can easily use it to fit the experimental data and qualitatively estimate the most important
physical parameters inherent to the sample studied as well as to obtain a first approximation for
further analysis in the framework of more advanced (and much more complicated) models of
magnetic dynamics.
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